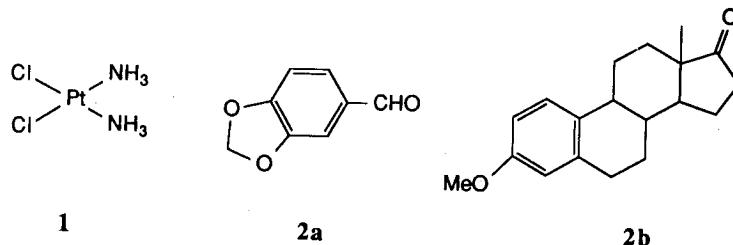

SHORT PAPER

PRODUCTS FROM FURAN VII: A SYNTHETIC ROUTE TO C-SUBSTITUTED AMINODEOXYPOLYOLS AND THEIR *cis*-Pt-COMPLEXES

GEORGIADIS P. MINAS, COULADOUROS A. ELIAS

*Chemistry Laboratory, Agricultural University of Athens,
Iera Odos 75, Athens 118 55, Greece*

CHONDROS P. COSTAS¹


Araetaion University Hospital, 76 V.Sofias Ave., Athens 611, Greece

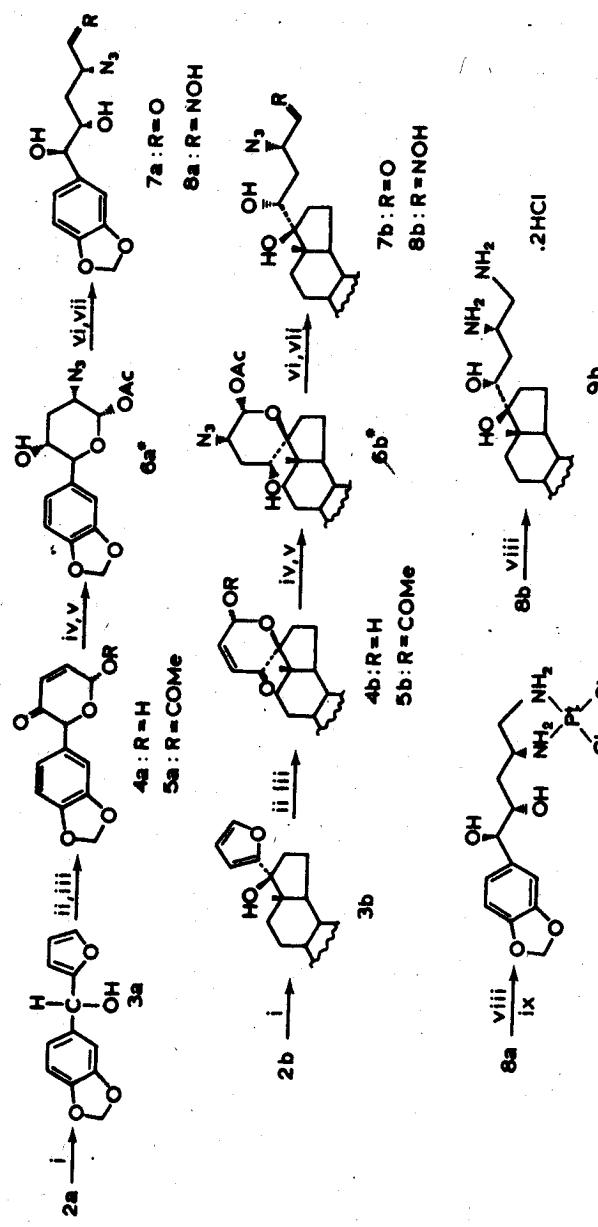
(Received April 1, 1987)

INTRODUCTION

Cisplatin, 1, (cis-diaminedichloroplatinum-II), is used today as anticancer agent². The fact that it has no selectivity against various tissues³ and the dose-related, cumulative and only partially reversible renal toxicity⁴, are the more serious disadvantageous of 1.

There is evidence that the presence of a hydrophylic⁵ sugar-moiety on the ligand, may decrease the toxicity of the drug. On the other hand, the importance of the receptor binding ability (RBA), of several ligands has also been reported^{3,6}.

Having the above in mind, a catechol derivative, as well as, a steroid one (namely, 3,4-methylenedioxy-benzaldehyde, **2a**, and 3-methoxy-estrone, **2b**), were chosen in order to demonstrate our methodology of producing 1,2 diamines and the related *cis*-Pt complexes, having a combination concerning hydrophilicity and possible RBA properties.


The synthetic strategy was the following :

- 1) Introduction of the selected substituent into C-5 of an 1-O-acetyl-pentopyranulose.
- 2) Transformation of the C-substituted pentopyranulose to an open-chained 1,2-diaminodeoxypentitol.
- 3) Complexation of the latter compound with K_2PtCl_4 .

CHEMISTRY

Introduction of a substituent to a sugar moiety by carbon-carbon bond formation, may be considered as a difficult task. That is why we have decided to construct the sugar skeleton upon a carbonyl group by using the well known rearrangement of 2-furfuryl alcohols to 2H-pyran-3(6H)-ones⁷. Accordingly, aldehyde **2a** and ketone **2b** were treated with 2-furyl-lithium yielding the corresponding furfuryl alcohols **3a** and **3b** which by subsequent oxidation with m-CPBA rearranged to the anomeric mixture of 6-hydroxy-2-(3,4-methylenedioxyphenyl)-2H-pyran-3(6H)-one (yield 65%, two steps, mp 119-20°C), **4a** and 17 β ,24-epoxy-24-hydroxy-19,21-dinorchola-1,3,5(10),22-tetraene-20-one⁸, (yield 62%, two steps, mp 191-20°C), **4b**, respectively.

Acetylation of alcohols **4a** and **4b** in benzene -at room temperature for 4h (acetic anhydride, sodium acetate), gave as major product the α -anomer of **5a**, which was purified by column chromatography using hexane-AcOEt 7:3 as the eluant (yield 76%, mp 99-100°C, 1H NMR: anomeric proton at 6.4 ppm, $J_{\text{vicinal}}=3.5$, $J_{\text{allylic}}=0$) while the α -anomer of hexenulose **5b** was purified by crystallization from acetone (yield 85%, mp 169-70°C, 1H NMR: anomeric proton at 6.6 ppm, $J_{\text{vicinal}}=3.2$, $J_{\text{allylic}}=0$).

Scheme I

Reagents: i) LiAlD_5 , D_6DMSO , 0°C , 1 h
 ii) m-CPBA , CH_2Cl_2 , 0°C , 1 h
 iii) NaBH_4 , NaOAc , H_2O , 0°C , 1 h
 iv) Ac_2O , AcONa , CH_2Cl_2 , 0°C , 1 h
 v) $\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{NH}_2$, H_2O , 0°C , 1 h
 vi) $\text{H}_4\text{NOH} \cdot \text{HCl}$, AcONa , H_2O , 0°C , 1 h
 vii) H_2 , PtO_2 , H_2O , 0°C , 1 h
 viii) K_2PtCl_4 , H_2O , 0°C , 1 h
 ix) H_2O , 0°C , 1 h
 x) H_2O , 0°C , 1 h

• major isomer

Addition of the azide anion upon **5a** and **5b** under conditions of stereoelectronic control⁹, (three-fold excess of sodium azide, in a mixture of THF:water:acetic acid 3:1:1 at room temperature for 6h) and *in situ* reduction¹⁰ of the carbonyl group with NaBH₄ at 0°C, yielded predominately 1-O-acetyl-2-amino-2,3-dideoxy-5-(3,4-methylenedioxyphenyl)- α -DL-*ribo*-pentopyranose, **6a**, which was purified by column chromatography with hexane:AcOEt 1:1 as the eluant and crystallized from methanol-water (yield 70%, mp 127-9°C, ¹H NMR: H-1=5.6ppm, J_{1,2}=3.2Hz ; H-5= 5.3ppm, J_{5,4}= 7.8Hz) and 24-acetyloxy-22-azido-17 β ,24-epoxy-20-hydroxy-19,21-dinorchola-1,3,5(10)-trien, **6b**, which was purified after three recrystallizations from AcOEt:hexane (yield 63%, mp 198°C, dec; ¹H NMR: anomeric proton at 5.9 ppm, J=2.9Hz), respectively. The ¹H NMR assignment of the above products were in agreement with analogous compounds^{11,12} confirming the equatorial orientation of all but the anomeric substituents.

Treatment of the above acetates (**6a**, **6b**) with a dilute methanolic solution of NaOH (MeOH/NaOH 0.1N 4:1) afforded the pentital **7a** (from **6a**) and tetrital **7b** (from **6b**), which were identified spectroscopically¹³. The latter aldehydes, **6a** and **6b**, were converted *in situ* to the oximes **8a** (colorless oil, yield 81%) and **8b** (crystals from AcOEt:hexane, mp 305°C, dec; yield 83%), by stirring the reaction mixture for 1h at 40°C with an excess of H₂NOH.HCl, while the pH was maintained at 4.5 with the addition of sodium acetate. Catalytic hydrogenation of **8a** and **8b** at 45 PSI with PtO₂, using a 2N HCl solution in MeOH/EtOH as the reaction solvent, yielded the hydrochloric salts of the coresponing 1,2-diamines: **9a** : 1,2-diamino-1,2,3-trideoxy-5-(3,4-methylenedioxyphenyl)-5R,S-ribitol (yield 85%, mp 112-4°C) and **9b** : 1,2-diamino-1,2,3-trideoxy-4-(17 β -hydroxy-19,21-dinorcholan-1,3,5(10)-trienyl)-erythritol, (yield 71%, mp 329°C, dec). The later salts were both crystallized from ethanol-ether.

Finally the *cis*-Pt complex of diamine **9a** was prepared by stirring **9a** with a two-fold excess of K₂PtCl₄ in water, at room temperature. The rate of complexation was followed by monitoring the pH of the reaction, which was maintained at 6.5 by addition of 0.1N NaOH solution¹⁴. The

precipitate was recrystallized from DMF/ether. The characteristic doublet at 315cm^{-1} of the IR spectra of compound 10 confirmed the cis orientation of the ligants.

SUMMARY

The synthesis of C-substituted 1,2-diaminopolyols via 2H-pyran-3(6H)-ones, is presented. Estrone and catechol were chosen as the C-ligants, in order to produce cis-Pt complexes, having a combination concerning hydrophilicity and possible RBA properties.

The Griniard coupling of the selected ligand with furyl-Li and the subsequent oxidative rearrangement of the furan to a pyran ring are the key steps of this general synthetic route to C-substituted aminodeoxypolyols.

Key Words : furfuryl alcohol, 2H-pyran-3(6H)-one, 2,3,6-trideoxy-2-amino-glucopyranose, 1,2-aminodeoxypolyol, cis-Pt complexes, estrone, catechol, anti-cancer compounds.

ΠΕΡΙΛΗΨΗ

ΠΡΟΙΟΝΤΑ ΑΠΟ ΦΟΥΡΑΝΙΑ VII. ΣΥΝΘΕΤΙΚΗ ΠΟΡΕΙΑ ΠΡΟΣ ω -ΥΠΟΚΑΤΕΣΤΗΜΕΝΕΣ ΑΜΙΝΟ-ΔΕΟΧΥ-ΠΟΛΥΟΛΕΣ ΚΑΙ ΣΥΜΠΛΟΚΟΠΟΙΗΣΗ ΑΥΤΩΝ ΜΕ ΛΕΥΚΟΧΡΥΣΟ.

Στην παρούσα εργασία παρουσιάζεται μία πορεία σύνθεσις συμπλόκων λευκοχρύσου με υποκαταστάτες ομάδες με πιθανή ικανότητα σύνδεσης με ορμονικούς υποδοχείς (RBA). Στις ομάδες αυτές έχει προστεθεί η ανοικτή αλυσίδα ενός υδατάνθρακα με στόχο την αύξηση της υδροφιλικότητας του τελικού συμπλόκου. Αμφότερες οι βελτιώσεις, στοχεύουν στην ελάττωση της θεραπευτικής δόσης και της τοξικότητας που παρουσιάζει το αντίστοιχο αντικαρκινικό φάρμακο (Cisplatin).

Η συνθετική πορεία είναι η εξής :

- 1) Εισαγωγή του πυρανικού δακτυλίου στην καρβονυλομάδα του επιλεγμένου υποκαταστάτη.
- 2) Προσθήκη 1.4 HN_3 στην παραπάνω ένωση και μετατροπή της στην οξείμη του ανοικτού αναλόγου (πολυνόλη).
- 3) Αναγωγή των N-ομάδων προς αμινομάδες και συμπλοκο-ποίηση αυτών με λευκόχρυσο.

REFERENCES

1. Taken in part from the Ph.D. Thesis of KPC, Agricultural University of Athens, 1986.
2. a) Connors T.A., Cleare M.S., Harrap K.P., *Cancer Treat. Rep.*; **63**, 1499, (1979). b) Theophanides T.; *Chem. Can.*; **32**, 30, (1980) and refs. therein.

3. Wappes B., Jennerwein N., Angerer E., Schonenberger H., Engel J., Berger M., Wrobel K., *J. Med. Chem.*; **27**, 1280, (1984).
4. Hill J., Loeb E., Speer R., MacLellan A., Hill N., *Proc. Am. Assoc. Cancer Res.*; **13**, 20, (1972).
5. Kidani Y., Achiwa K., Ono H., Tomatsu K., Zaikokuji K., Noji M., Tashiro T.; *J. Clin. Hematol. Oncol.*; **15**(2), 35, (1985).
6. a) Chesne C., Leclercq G., Pointeau P., Patin H.; *Eur. J. Med. Chem.-Chim. Ther.*; **21**, 321, (1986) b) Gandolfi O., Blum J., Mandelbaum-Shavit F., *Inorg. Chim. Acta*; **91**, 257, (1984) c) Katzenellenbogen J., Johnson M., Myeas H.; *Biochemistry*; **12**, 4085, (1973).
7. For a review see Holder N.; *Chem. Rev.*; **82**, 287, (1982) ; see also Georgiadis M.P., Couladouros E.A., *J. Org. Chem.*, **51**, 2725 (1986) and refs therein.
8. a) The assignment of 17-OH was made according to Lefebvre Y.; *Tetrahedron Lett.*; **2**, 133, (1972) b) All new compounds had consistent analytical and spectroscopical data.
9. Paulsen H., Tietz H., Koebernick W., Sinnwell V., *Chem. Ber.*, **113**, 2616-29, (1980).
10. Since the addition products underwent readily a retro-Michael reaction, we have found that the in situ reduction of the carbonyl group is an effective way to 1-O-carbonyloxy-sugars; see Couladouros E., Georgiadis M.; *2nd Cyprus Conf. on Meth. in Drug Res. Limassol, Cyprus*, p.24, (1985).
11. Leboul J., Cleophax J., Gero S., Rolland A., Forchioni A., *Tetrahedron*, **965-8**, (1977).
12. a) Couladouros E.A.; " Synthesis of Anticoccidials and Aminosugars from Furan and Stereochemical Studies of the New Compounds by ^1H NMR", Ph.D. Thesis, Agricultural University of Athens, Athens 1984. b) Georgiadis M.P., Couladouros E.A., Polyssiou M.G., Filippakis S., Metzafos D., Terzis A., *J. Org. Chem.*, **47**, 3054, (1982)
13. The reaction mixture showed only one spot on TLC. The IR spectra of this mixture showed the characteristic band of the aldehyde group at 1725 cm^{-1} .
14. Haroutounian S., Georgiadis M., Bailar J.; *Inorg. Chim. Acta*; **124**, 137, (1986)